lunes, 25 de abril de 2016

EN CASO DE UNA GUERRA NUCLEAR QUIEN SE PUEDE SALVAR

En dia pasados leia una noticia en mi cuenta de Facebook sobre la promocion de una nota que los Norcoreano anunciaban con bombo y platillos su nuevo poder, se referia a una bomba atomica o una bomba H, en estos momento me parecio "x" la noticia, pero comense ver los comentario que algunas personas se alegraban los seguidores de Morena de lopez obrador, por que segun los Norcoreanos podrian destuir a los Estados Unidos de Norte America, en esos momento pense que puede pasar a Mexico , pero analizando que puede pasar si hay un ataque nuclear a los Estados Unidos,
Las explosiones nucleares producen muy diversos tipos de efectos todos ellos tremendamente destructivos en todos los aspectos. Se distinguen en dos categorías. Efectos inmediatos o primarios y efectos retardados o secundarios. Entre los inmediatos estarían la onda expansiva, el pulso de calor, la radiación ionizante y el pulso electromagnético (EMP). En el grupo de los retardados estarían los efectos sobre el clima, el medio ambiente así como el daño generalizado a infraestructuras básicas para el sustento humano. A pesar de la espectacularidad de los primeros son los daños secundarios los que ocasionarían el grueso de las muertes tras un ataque nuclear. Pero los daños no solo deben medirse por separado ya que en muchos casos actúan efectos sinérgicos es decir, que un daño potencia el otro. Por ejemplo, la radiación disminuye las defensas del organismo y, a su vez, agudiza la posibilidad de infección de las heridas causadas por la explosión aumentando así la mortalidad. Es precisamente esa multitud de efectos y sinergias lo que hace de las armas nucleares el arma más destructiva que existe.
La emisión inicial de energía se produce en un 80% o más en forma de rayos gamma pero éstos son rápidamente absorbidos y dispersados en su mayoría por el aire en poco más de un microsegundo convirtiendo la radiación gamma en radiación térmica (pulso térmico) y energía cinética (onda de choque) que son en realidad los dos efectos dominantes en los momentos iniciales de la explosión. El resto de la energía se libera en forma de radiación retardada (lluvia radiactiva o fallout) y no siempre se suele contar a la hora de medir el rendimiento de la explosión. Las explosiones a gran altitud producen un mayor daño y flujo de radiación extrema debido a la menor densidad del aire (los fotones encuentran menos oposición) y, consiguientemente se genera una mayor onda expansiva.
Pero que pasa donde cae la bomba, podemos decir que le podemos llamar zona cero  Ésta es la zona situada en la vertical de donde se produce la explosión (epicentro) y sus cercanías. Aquí la mortalidad alcanza el 100% y todos los efectos se reciben simultáneamente sin desfase alguno. El efecto conjunto es tan brutal que no puede quedar nada en pie. Se le conoce también como área de devastación o aniquilación total. De hecho, lo único que puede quedar tras la explosión en ese lugar es un enorme cráter de varias decenas o cientos de metros. La zona cero solo está presente para explosiones a muy baja altitud, subterráneas, poco profundas o a ras de suelo. Para la bomba que nos ocupa el resultado es un cráter de 3 km de diámetro y 60 metros de profundidad, la altura de un edificio de 20 plantas.
Aproximadamente el 80% de la energía generada por las reacciones nucleares se emite en forma de radiaciones penetrantes de alta frecuencia extremas y peligrosas para el cuerpo, impacten donde impacten. Se trata de la radiación ionizante. Esta se constituye por una serie de partículas producto de la desintegración como núcleos de helio y electrones (partículas alfa y beta, respectivamente) y de fotones o radiación electromagnética a muy alta energía (radiación gamma). Éstos últimos son los realmente peligrosos, a efectos inmediatos, debido a su gran alcance y poder de penetración. Su velocidad es la de la luz por lo que sus efectos se perciben simultáneamente al flash luminoso. A pesar de eso su alcance no es demasiado alto debido a la fuerte interacción de dicha radiación con la materia lo que hace que pierda intensidad rápidamente con la distancia. De hecho es esa interacción la que confiere la letalidad a dicha radiación.
Conviene no confundir esta radiación con la radiactividad remanente tras la explosión (las partículas α y β en suspensión en el ambiente y sobre todo la radiactividad proveniente de los núcleos hijos, que son radiactivos). El pulso de radiación empieza y acaba con la explosión y obviamente, es letal, además de ser mucho más intenso que la radiación posterior. A pesar de esto, la radiación posterior remanente puede perdurar millones de años (la semivida de los isótopos hijos de la reacción nuclear). Este hecho puede significar que la radiación remanente sea mucho más letal (en promedio temporal) que la producida por la radiación γ.
Para una bomba de un megatón la radiación ionizante mataría a todo ser vivo situado en 15 km a la redonda. Sin embargo, en el caso de la bomba mayor, como en el ejemplo propuesto de 20 Mt, los daños producidos por dicha radiación no son importantes. Esto es porque su rango de efecto es menor que el del choque térmocinético, lo que vulgarmente se conoce como la bola de fuego de la explosión que se detalla más adelante. En el caso de artefactos más pequeños como los que estallaron en las ciudades japonesas sus daños sí son considerables. Aquí su radio de efecto es mayor que el de la bola de fuego y pueden producir lesiones graves en los organismos vivos que sobrevivan a todos los demás daños.
Éste es el motivo de que muchos japoneses supervivientes de las explosiones murieran a las pocas semanas del ataque. Los primeros síntomas son sed intensa, náuseas, fiebre y manchas en la piel producidas por hemorragias subcutáneas. Estos síntomas parecen remitir pocas horas después. El paciente entra en un periodo de latencia durante el cual las defensas (glóbulos blancos) y la capacidad regeneradora del individuo menguan considerablemente dejándolo más expuesto a enfermedades e infecciones. Una o dos semanas más tarde se entra en la fase aguda: diarreas, pérdida de cabello y hemorragias intestinales. Durante estas semanas la víctima puede morir o recuperarse o puede sufrir distintos tipos de traumas o retrasos. 
Pulso electromagnético.-También conocido por las siglas EMP, del inglés Electromagnetic pulse, no se le conoce que afecte directamente a los seres vivos pero si se sabe que produce importantes daños en todas aquellas infraestructuras, vehículos y aparatos que hagan uso de sistemas y equipos electrónicos. Son precisamente dichos daños los que han interesado a muchos ingenieros militares a construir armas que lo maximicen. Existe la posibilidad de detonaciones a gran altitud sobre ciudades o instalaciones industriales encaminadas solamente a producir esos daños en la circuitería de todos los componentes electrónicos del área barrida por el EMP.
 Destello luminoso.-Lo primero que se hace presente, a simple vista, en la explosión de una bomba atómica es su potente destello de luz. Y esto es solo una pequeña parte de los fotones emitidos. La mayoría poseen longitudes de onda mucho más cortas que van desde los rayos X al gamma extremo. El destello se propaga a velocidad c y cegará temporalmente a toda persona que se encuentre mirando en la dirección de la explosión en un radio de 500km. Para los que se encuentren en distancias cortas las lesiones oculares pueden llegar a ser permanentes. En una bomba de 20 Mt la emisión de luz intensa duraría en torno a 17,3 s .
Por esta razón en todos los ensayos nucleares es obligado llevar puestas gafas especiales ya que a pesar de encontrarse a distancia segura para todos los demás efectos el del flash luminoso es, con diferencia, el que más alcance tiene.
El flash lumínico se produce por los mismos mecanismos de absorción y reemisión por los que se produce el pulso térmico que se detalla más abajo.
Pulso térmico.-Tras el primer fogonazo lumínico se puede distinguir una gigantesca bola de fuego que se forma casi al instante. A partir de ese momento la bola de fuego esférica se expande lentamente hasta estabilizarse y empezar a disgregarse. El proceso es bastante complejo y se origina a partir de una serie de fenómenos químicos y radiantes muy poderosos que se dan en las cercanías de la explosión.
Los rayos gamma y el resto de radiación directa emitida por las reacciones nucleares ya está lejos del epicentro. Mientras tanto, las moléculas de aire se han disociado por completo, los átomos libres resultantes se han ionizado y sus orbitales más interiores se hallan sobreexcitados por lo que hay una enorme energía potencial contenida en los átomos a punto de liberarse en cuestión de microsegundos. Y todo esto ha sido inducido por la citada radiación ionizante. El 80% de la energía inicial de la bomba. Pocos instantes después estos átomos empiezan a recuperar estados menos energéticos. Los electrones disminuyen sus niveles de excitación en cascada, nivel a nivel y algunos iones empiezan ya a capturar los primeros electrones libres. Ambos fenómenos, la captura de electrones y las desexcitaciones en cascada, son fuente de radiación. Inicialmente es radiación en alta frecuencia pero en seguida decae y se va imponiendo la radiación térmica (infrarrojos, ola de calor) y la visible (flash de luz). Esto es porque los fotones ionizantes o excitantes son más energéticos que los reemitidos en las capturas y desexcitaciones subsiguientes. Este fenómeno cuántico provoca la aparición en cuestión de pocos microsegundos de un flujo enorme de radiación térmica que se propaga naturalmente, a velocidad c. 
Onda de choque.-Las ondas de choque no son más que ondas de presión como lo es el sonido por lo que viajan a su misma velocidad. Los explosivos convencionales se basan en la expansión repentina del aire para provocar una onda expansiva que golpee sobre construcciones y personas. A lo sumo puede tratarse de artilugios incendiarios que provoquen una deflagración simultánea pero en el caso de las bombas atómicas la destrucción sobre el terreno es enorme aun cuando la onda de choque ni siquiera ha escapado del epicentro de la explosión. Si bien el aire circundante ya ha incrementado su temperatura en miles de grados debido a la radiación térmica aún existe un volumen de aire calentado hasta unos 100 millones de grados centígrados. Ese aire solo puede hacer una cosa: expandirse.
La diferencia de temperaturas es tan brutal que la onda de choque resultante es sumamente energética y de muy larga duración en contraste con las que producen los explosivos convencionales lo que da tiempo a que esta envuelva edificios y, en definitiva, cualquier cosa que alcance. El efecto no es tanto el de un empuje sino más bien una especie de estrujamiento en todas direcciones. El aire sobrecalentado en las cercanías de la zona cero es impulsado hacia la periferia reforzando el efecto abrasador de la bola de fuego. A distancias más allá de la zona de volatilización, construcciones, vehículos, árboles y cualquier cosa que pudiese encontrarse es triturada y sus restos expulsados a velocidades supersónicas formándose así un enorme cráter. A distancias aún mayores el efecto no es tan poderoso, se rompen cristales , animales y personas son derribados o arrojados a varios metros de distancia. La peor parte se la llevan debido al impacto de todas las escorias arrojadas que actúan a modo de proyectiles. Este bombardeo de objetos impacta en todas partes hiriendo y mutilando e incluso derribando edificios. Conducciones de gas, vehículos y gasolineras estallan produciendo incendios dispersos de consideración.
Lluvia radiactiva local.-Los daños inmediatos terminan finalmente con el fallout o lluvia radiactiva local. Gran parte de las cenizas y polvo en ascensión procedentes de la explosión empiezan a depositarse de nuevo sobre el suelo horas después. Todo este material está sumamente irradiado. Esto incrementa los niveles de contaminación radiactiva de la zona pero no solo eso. Llena el aire de partículas que pueden ser ingeridas por todos los supervivientes en el área por vía respiratória. Su acumulación en la piel ya es de por sí nociva; no hace falta imaginar los daños que conlleva respirar dicho polvo. El área de deposición de la lluvia dependerá de las condiciones atmosféricas posteriores a la detonación.
Esta lluvia no hay que entenderla en un sentido literal. Son partículas que caen y se van depositando paulatinamente contaminándolo todo. Pero puede ocurrir que por las condiciones meteorológicas del momento llueva de verdad en alguna parte cercana a la explosión. En esos puntos sí se produce una lluvia radiactiva en un sentido estricto, rainfall. Estos lugares reciben una especial dosis de contaminación por lo que allí donde llueve realmente, suele quedar lo que se llama un punto caliente donde la intensidad de la contaminación es muy elevada. 
Oscurecimiento radioeléctrico.-El oscurecimiento o blackout es, también, un efecto colateral de la radiación ionizante. Como se ha explicado los rayos gamma emitidos por una detonación nuclear ionizan todo el aire en kilómetros a la redonda. Cuanto más potente sea la bomba mayor será ese radio. La ionización inicial se transforma en la onda termocinética ya descrita pero tras la destrucción inicial sigue quedando un volumen de aire remanente altamente ionizado y excitado. El blackout es producto de dicha ionización así como de la sobreexcitación electrónica y se produce porque los iones empiezan a neutralizarse captando electrones libres y los electrones excitados a caer a niveles energéticos más bajos. Al captar un electrón se libera un fotón de energía según los niveles cuánticos del átomo o molécula que se neutralice. Este fotón suele ser de baja energía y el fenómeno multiplicado por los millones de átomos y moléculas captando electrones a la vez produce una emisión saturante que genera un ruido radioeléctrico que impide el paso de las ondas electromagnéticas de baja frecuencia. Es decir ondas de radio, microondas... Este efecto puede durar desde unas pocas horas a semanas y depende mucho no solo de la potencia de la bomba sino también de las condiciones atmosféricas en la zona que pueden hacer que se renueve y mezcle el aire rápidamente o que permanezca la bolsa de aire ionizado durante varios días.
Por este motivo a las bombas que maximizan la emisión de rayos gamma no solo se las llama bombas EMP sino también bombas blackout. Esta propiedad ha sido aprovechada por la estrategia militar nuclear para crear áreas de blackout antes del ataque real lo que impediría la posible intercepción de los misiles verdaderos o simplemente cegaría a la nación atacada y posiblemente la dejaría indefensa ante ataques de otra índole. De la misma forma que se puede producir un EMP de gran altitud se producirá también un blackout de gran altitud que puede cubrir continentes enteros. No es de extrañar que tales artefactos sean objeto del más alto secreto.
Por ultimo podemos decir  los Terremotos, la onda de presión de explosiones subterráneas pueden propagarse a través de la tierra y causar terremotos menores. La teoría sugiere que una explosión nuclear podría disparar rupturas de fallas geológicas y así causar un sismo mayor a distancias de pocos cientos de kilómetros del punto de impacto. despues de ese pequeño proceso que puede terminar la vida a todo ser vivo en un radio de 15 a 100 kilometros, lo cual la area tendra radiaciones de 50 a 150 años en otras palabra esa area no sirve para nada , quiero recalcar una cosa que en los estados unidos existe un super volcan llamada yellowstone y eso que alguno se preguntara, bueno por los efectos de la bomba nucleares puede despertar mas bien dicho provocar una erupción.
Yellowstone es una de las regiones volcánicas más monitorizadas del planeta. No es para menos teniendo en cuenta que la caldera del volcán sobre la que se asienta es una "piscina" de lava de 88,5 kilómetros de largo por 32 de ancho y una profundidad máxima de 14 kilómetros. La razón por la que este monstruo duerme es precisamente por los más de 10.000 pequeños agujeros (estanques de lodo hirviente, fumarolas, géiseres...) por los que la presión y la temperatura salen y mantienen la caldera bajo control, Según Sally Sennert, vulcanóloga del Instituto Smithsonian, Yellowstone es un 8 en el Índice de Explosividad de Volcanes, una medida estimativa de la fuerza con la que un volcán puede explotar. El Monte Santa Elena, cuya erupción en 1980 barrió 388 kilómetros cuadrados de bosque y mató a 57 personas era un 4. La progresión del índice es geométrica. Un 8 como el de Yellowstone es 10.000 veces más potente. Los geólogos están de acuerdo en que sería una explosión como ninguna de las que hemos conocido hasta ahora,  despues ver la manigtud y las consecuencias me hago la pregunta ¿quien se puede salvar despues de un ataque nuclear a los Estados Unidos? por que estamos en el anillo o cinturon de fuego.
El Cinturón de Fuego del Pacífico (o Anillo de Fuego del Pacífico), también conocido como Cinturón Circumpacífico, está situado en las costas del océano Pacífico y se caracteriza por concentrar algunas de las zonas de subducción más importantes del mundo, lo que ocasiona una intensa actividad sísmica y volcánica en las zonas que abarca.
Incluye a Chile, Argentina, Bolivia, Perú, Ecuador, Colombia, Panamá, Costa Rica, Nicaragua, El Salvador, Honduras, Guatemala, México, Estados Unidos, Canadá, luego dobla a la altura de las islas Aleutianas y baja por las costas e islas de Rusia, Japón, Taiwán, Filipinas, Indonesia, Papúa Nueva Guinea y Nueva Zelanda.
El lecho del océano Pacífico reposa sobre varias placas tectónicas, las cuales están en permanente fricción y por ende, acumulan tensión. Cuando esa tensión se libera, origina terremotos en los países del cinturón. Además, la zona concentra actividad volcánica constante. En esta zona las placas de la corteza terrestre se hunden a gran velocidad (varios centímetros por año) y a la vez acumulan enormes tensiones que deben liberarse en forma de sismos.
El Cinturón de Fuego se extiende sobre 40 000 km (25 000 millas) y tiene la forma de una herradura. Tiene 452 volcanes y concentra más del 75 % de los volcanes activos e inactivos del mundo.1 Alrededor del 90 % de los terremotos del mundo y el 80 % de los terremotos más grandes del mundo se producen a lo largo del Cinturón de Fuego.  
El Cinturón de Fuego es el resultado directo de la tectónica de placas, el movimiento y la colisión de las placas de la corteza terrestre. La sección oriental del Cinturón es el resultado de la subducción de la placa de Nazca y la placa de Cocos debajo de la placa Sudamericana que se desplaza hacia el oeste. La placa de Cocos se hunde debajo de la placa del Caribe en Centroamérica. Una porción de la placa del Pacífico, junto con la pequeña placa de Juan de Fuca se hunden debajo de la placa Norteamericana. A lo largo de la porción norte del cinturón, la placa del Pacífico, que se desplaza hacia el noroeste, está siendo subducida debajo del arco de las islas Aleutianas. Más hacia el oeste, la placa del Pacífico está subducida a lo largo de los arcos de la península de Kamchatka en el sur más allá de Japón. La parte sur es más compleja, con una serie de pequeñas placas tectónicas en colisión con la placa del Pacífico, desde las Islas Marianas, Filipinas, Bougainville, Tonga y Nueva Zelanda. Indonesia se encuentra entre el cinturón de Fuego a lo largo de las islas adyacentes del noreste, incluyendo Nueva Guinea, y el cinturón Alpide a lo largo del sur y oeste de Sumatra, Java, Bali, Flores y Timor.
De verdad no veo claro quien puede sobrevivir despues de un ataque nuclear, por alli me comentaron los unicos seres vivente son las cucarachas.


Post data
cada ser tenemos un parasito o bacteria dañina en el organismo, la tierra tiene uno se llama HUMANIDAD



 

No hay comentarios:

Publicar un comentario